Recently, Daskalakis, Fishelson, and Golowich (DFG) (NeurIPS`21) showed that if all agents in a multi-player general-sum normal-form game employ Optimistic Multiplicative Weights Update (OMWU), the external regret of every player is $O(\textrm{polylog}(T))$ after $T$ repetitions of the game. We extend their result from external regret to internal regret and swap regret, thereby establishing uncoupled learning dynamics that converge to an approximate correlated equilibrium at the rate of $\tilde{O}(T^{-1})$. This substantially improves over the prior best rate of convergence for correlated equilibria of $O(T^{-3/4})$ due to Chen and Peng (NeurIPS`20), and it is optimal -- within the no-regret framework -- up to polylogarithmic factors in $T$. To obtain these results, we develop new techniques for establishing higher-order smoothness for learning dynamics involving fixed point operations. Specifically, we establish that the no-internal-regret learning dynamics of Stoltz and Lugosi (Mach Learn`05) are equivalently simulated by no-external-regret dynamics on a combinatorial space. This allows us to trade the computation of the stationary distribution on a polynomial-sized Markov chain for a (much more well-behaved) linear transformation on an exponential-sized set, enabling us to leverage similar techniques as DFG to near-optimally bound the internal regret. Moreover, we establish an $O(\textrm{polylog}(T))$ no-swap-regret bound for the classic algorithm of Blum and Mansour (BM) (JMLR`07). We do so by introducing a technique based on the Cauchy Integral Formula that circumvents the more limited combinatorial arguments of DFG. In addition to shedding clarity on the near-optimal regret guarantees of BM, our arguments provide insights into the various ways in which the techniques by DFG can be extended and leveraged in the analysis of more involved learning algorithms.


翻译:最近, Dakalakis、 Fishelson 和 Golowich (DFG)(NeurIPS'21) 显示,如果多玩者一般和正常游戏中的所有代理商都采用最佳多倍增 Weights更新(OMWU),那么每个玩家的外部遗憾是$O(textrm{polylogy}(T) 重复游戏之后的$T$美元。我们把外部的遗憾扩大到内部的遗憾和互换(NeurIPS'21),从而建立不相交的学习链路流动力动力,以$(tilde{O}(T ⁇ -1}) 接近的直线性动态速度趋近。这大大改进了之前对Q(T ⁇ -3/4}) 平等离子(NeurIPS'20) 方法的合并率。在不重复游戏中,最理想的是,通过不重复的框架中, 以$(mlogyral) imaltial imal imal(t) dial-dal dival dal disal disal) dial disal disal disl) 在固定操作中,我们可以建立更高平点操作的平流(Sild) 。

1
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
92+阅读 · 2021年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员