We propose Image-to-Image Schr\"odinger Bridge (I$^2$SB), a new class of conditional diffusion models that directly learn the nonlinear diffusion processes between two given distributions. These diffusion bridges are particularly useful for image restoration, as the degraded images are structurally informative priors for reconstructing the clean images. I$^2$SB belongs to a tractable class of Schr\"odinger bridge, the nonlinear extension to score-based models, whose marginal distributions can be computed analytically given boundary pairs. This results in a simulation-free framework for nonlinear diffusions, where the I$^2$SB training becomes scalable by adopting practical techniques used in standard diffusion models. We validate I$^2$SB in solving various image restoration tasks, including inpainting, super-resolution, deblurring, and JPEG restoration on ImageNet 256x256 and show that I$^2$SB surpasses standard conditional diffusion models with more interpretable generative processes. Moreover, I$^2$SB matches the performance of inverse methods that additionally require the knowledge of the corruption operators. Our work opens up new algorithmic opportunities for developing efficient nonlinear diffusion models on a large scale. scale. Project page and codes: https://i2sb.github.io/


翻译:我们提出图像到图像的薛定谔桥(I$^2$SB),这是一种新的有条件扩散模型,直接学习两个给定分布之间的非线性扩散过程。这些扩散桥特别适用于图像恢复,因为降低的图像是重新构建清晰图像的结构性信息先验。 I$^2$SB 属于可计算的薛定谔桥的可观察类别(线性扩散模型的非线性扩展),其边界对的边缘分布可以在解析计算。这导致非线性扩散的无需模拟的框架,其中 I$^2$SB 的训练通过采用标准扩散模型中使用的实际技术而变得可扩展。我们在 ImageNet 256x256 上验证了 I$^2$SB 对于各种图像恢复任务的求解,包括修复、超分辨率、去模糊和 JPEG 修复,并证明了 I$^2$SB 超过了标准条件扩散模型,具有更可解释的生成过程。此外,I$^2$SB 与需要使用失真算子的反向方法性能相匹配。我们的工作为开发大规模高效的非线性扩散模型开辟了新的算法机会。 项目主页和代码: https://i2sb.github.io/

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员