The availability of the sheer volume of Copernicus Sentinel imagery has created new opportunities for land use land cover (LULC) mapping at large scales using deep learning. Training on such large datasets though is a non-trivial task. In this work we experiment with the BigEarthNet dataset for LULC image classification and benchmark different state-of-the-art models, including Convolution Neural Networks, Multi-Layer Perceptrons, Visual Transformers, EfficientNets and Wide Residual Networks (WRN) architectures. Our aim is to leverage classification accuracy, training time and inference rate. We propose a framework based on EfficientNets for compound scaling of WRNs in terms of network depth, width and input data resolution, for efficiently training and testing different model setups. We design a novel scaled WRN architecture enhanced with an Efficient Channel Attention mechanism. Our proposed lightweight model has an order of magnitude less trainable parameters, achieves 4.5% higher averaged f-score classification accuracy for all 19 LULC classes and is trained two times faster with respect to a ResNet50 state-of-the-art model that we use as a baseline. We provide access to more than 50 trained models, along with our code for distributed training on multiple GPU nodes.


翻译:Copernicus Sentinel 图像的纯量为利用深层学习进行大规模土地利用土地覆盖(LULC)绘图创造了新的机会。关于这类大型数据集的培训是一项非三重任务。在这项工作中,我们试验了大地球网数据集,用于LULC图像分类和基准不同的最新模型,包括进化神经网络、多层感应器、视觉变异器、高效网络和广域余存网络等结构。我们的目标是利用分类准确性、培训时间和推断率。我们提出了一个基于高效网络的框架,用于在网络深度、宽度和输入数据分辨率方面对WERN进行复合缩放。我们设计了一个新的、规模更大的WRN结构,通过高效的频道关注机制予以强化。我们提议的轻量模型具有数量级低的可培训参数,所有19个LULC课程均达到4.5%的平均F-级分类精度。我们用高效的网络网络网络为50级模型提供比我们经过培训的多级的SNet50号模型更快的两度培训。我们用这个模型提供比我们经过培训的RNet50级的多级标准。

0
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
【图与几何深度学习】Graph and geometric deep learning,49页ppt
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年10月12日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
4+阅读 · 2019年11月21日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
7+阅读 · 2021年10月12日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
Arxiv
4+阅读 · 2019年11月21日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员