The availability of the sheer volume of Copernicus Sentinel imagery has created new opportunities for land use land cover (LULC) mapping at large scales using deep learning. Training on such large datasets though is a non-trivial task. In this work we experiment with the BigEarthNet dataset for LULC image classification and benchmark different state-of-the-art models, including Convolution Neural Networks, Multi-Layer Perceptrons, Visual Transformers, EfficientNets and Wide Residual Networks (WRN) architectures. Our aim is to leverage classification accuracy, training time and inference rate. We propose a framework based on EfficientNets for compound scaling of WRNs in terms of network depth, width and input data resolution, for efficiently training and testing different model setups. We design a novel scaled WRN architecture enhanced with an Efficient Channel Attention mechanism. Our proposed lightweight model has an order of magnitude less trainable parameters, achieves 4.5% higher averaged f-score classification accuracy for all 19 LULC classes and is trained two times faster with respect to a ResNet50 state-of-the-art model that we use as a baseline. We provide access to more than 50 trained models, along with our code for distributed training on multiple GPU nodes.
翻译:Copernicus Sentinel 图像的纯量为利用深层学习进行大规模土地利用土地覆盖(LULC)绘图创造了新的机会。关于这类大型数据集的培训是一项非三重任务。在这项工作中,我们试验了大地球网数据集,用于LULC图像分类和基准不同的最新模型,包括进化神经网络、多层感应器、视觉变异器、高效网络和广域余存网络等结构。我们的目标是利用分类准确性、培训时间和推断率。我们提出了一个基于高效网络的框架,用于在网络深度、宽度和输入数据分辨率方面对WERN进行复合缩放。我们设计了一个新的、规模更大的WRN结构,通过高效的频道关注机制予以强化。我们提议的轻量模型具有数量级低的可培训参数,所有19个LULC课程均达到4.5%的平均F-级分类精度。我们用高效的网络网络网络为50级模型提供比我们经过培训的多级的SNet50号模型更快的两度培训。我们用这个模型提供比我们经过培训的RNet50级的多级标准。