Adversarial examples are commonly viewed as a threat to ConvNets. Here we present an opposite perspective: adversarial examples can be used to improve image recognition models if harnessed in the right manner. We propose AdvProp, an enhanced adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to our method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. We show that AdvProp improves a wide range of models on various image recognition tasks and performs better when the models are bigger. For instance, by applying AdvProp to the latest EfficientNet-B7 [28] on ImageNet, we achieve significant improvements on ImageNet (+0.7%), ImageNet-C (+6.5%), ImageNet-A (+7.0%), Stylized-ImageNet (+4.8%). With an enhanced EfficientNet-B8, our method achieves the state-of-the-art 85.5% ImageNet top-1 accuracy without extra data. This result even surpasses the best model in [20] which is trained with 3.5B Instagram images (~3000X more than ImageNet) and ~9.4X more parameters. Models are available at https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet.
翻译:Adversarial 示例通常被视为对ConvNets的威胁。 这里我们展示了一个相反的视角: 对抗性示例可以用来改进图像识别模型, 如果以正确的方式加以利用。 我们提议AdvProp, 这是一种强化的对抗性培训计划, 将对抗性示例作为额外实例处理, 以防止过度适应。 我们方法的关键在于对对抗性示例使用单独的辅助批次规范, 因为它们对普通示例有不同的基本分布。 我们显示 AdvProp 改进了各种图像识别任务的广泛模型, 当模型更大时, 其效果会更好。 例如, 将 AdvProp 应用到最新的高效Net- B7 [28] 在图像Net上, 我们实现了对图像Net(+0.7%) 、 图像Net- C (+6.5%)、 图像Net- A (+7.0%) 、 Stylizizized- Imagi Net (+4.8%) 。 我们的方法提高了效率 Net- B8, 在没有额外数据的情况下, 我们的方法实现了8 的状态8 。 这结果甚至超越了在 [20/ brealnet/ amb/ true/ tremb/ instilles.