Recently, Stochastic Gradient Descent (SGD) and its variants have become the dominant methods in the large-scale optimization of machine learning (ML) problems. A variety of strategies have been proposed for tuning the step sizes, ranging from adaptive step sizes to heuristic methods to change the step size in each iteration. Also, momentum has been widely employed in ML tasks to accelerate the training process. Yet, there is a gap in our theoretical understanding of them. In this work, we start to close this gap by providing formal guarantees to a few heuristic optimization methods and proposing improved algorithms. First, we analyze a generalized version of the AdaGrad (Delayed AdaGrad) step sizes in both convex and non-convex settings, showing that these step sizes allow the algorithms to automatically adapt to the level of noise of the stochastic gradients. We show for the first time sufficient conditions for Delayed AdaGrad to achieve almost sure convergence of the gradients to zero. Moreover, we present a high probability analysis for Delayed AdaGrad and its momentum variant in the non-convex setting. Second, we analyze SGD with exponential and cosine step sizes, which are empirically successful but lack theoretical support. We provide the very first convergence guarantees for them in the smooth and non-convex setting, with and without the Polyak-{\L}ojasiewicz (PL) condition. We also show their good property of adaptivity to noise under the PL condition. Third, we study the last iterate of momentum methods. We prove the first lower bound in the convex setting for the last iterate of SGD with constant momentum. Moreover, we investigate a class of Follow-The-Regularized-Leader-based momentum algorithms with increasing momentum and shrinking updates. We show that their last iterate has optimal convergence for unconstrained convex stochastic optimization problems.


翻译:最近,谷仓梯子(SGD)及其变异体成为大规模优化机器学习(ML)问题的主要方法。 我们提出了各种战略来调整步数大小, 从适应步数大小到超速方法, 以改变每个迭代的步数大小。 此外, 磁盘任务中广泛使用了动力来加速培训进程。 然而, 我们的理论理解存在差距。 在这项工作中, 我们开始缩小这一差距, 向少数超速优化方法提供正式保证, 并提出改进的算法。 首先, 我们分析了AdaGrad( 延迟的AdaGrad) 步数的通用版。 在螺旋和不折叠式结构设置中, 显示这些步数使算能自动适应振动速度, 加速速度梯度的振动状态。 我们第一次展示了延迟的更替条件, 使梯子更接近于零。 此外, 我们第一次对延迟的AdGradGrad( DeaGrad) 和它的动动动向下进行了高概率分析, 也显示它们最终的SGRAx 进阶级稳定状态, 显示我们最后的SGRA 和动力变变的SGD 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
EiHi Net: Out-of-Distribution Generalization Paradigm
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员