This paper develops a new EiHi net to solve the out-of-distribution (OoD) generalization problem in deep learning. EiHi net is a model learning paradigm that can be blessed on any visual backbone. This paradigm can change the previous learning method of the deep model, namely find out correlations between inductive sample features and corresponding categories, which suffers from pseudo correlations between indecisive features and labels. We fuse SimCLR and VIC-Reg via explicitly and dynamically establishing the original - positive - negative sample pair as a minimal learning element, the deep model iteratively establishes a relationship close to the causal one between features and labels, while suppressing pseudo correlations. To further validate the proposed model, and strengthen the established causal relationships, we develop a human-in-the-loop strategy, with few guidance samples, to prune the representation space directly. Finally, it is shown that the developed EiHi net makes significant improvements in the most difficult and typical OoD dataset Nico, compared with the current SOTA results, without any domain ($e.g.$ background, irrelevant features) information.


翻译:本文开发了一个新的 Eihi 网, 以解决深层学习中的分配( OoD) 普遍化问题。 Eihi 网是一个示范学习模式, 任何视觉骨干都可以幸存。 这个模式可以改变深层模型以前的学习方法, 即找出感应样本特征和对应类别之间的相互关系, 而这些特征和标签之间有不精确的特征和标签之间的假关系。 我们通过明确和动态地将SimCLR和ICV-Reg结合成SimHi网和VIC-Reg, 将原始的- 正- 负样配为最小的学习元素, 深层模型迭代地建立了与特性和标签之间因果关系密切的关系, 压制假相。 为了进一步验证拟议的模型, 并加强既有的因果关系, 我们开发了人类在圈内的战略, 且没有指导样本, 直接利用代表空间。 最后, 我们发现, 开发的 Eihi 网与当前SOTA结果相比, 与目前最困难和最典型的 OOD 数据标准( 如 $ 背景, 不相关的特征) ) 显著的改善 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
12+阅读 · 2021年6月29日
Arxiv
18+阅读 · 2020年7月13日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员