One of the challenges in analyzing learning algorithms is the circular entanglement between the objective value and the stochastic noise. This is also known as the "chicken and egg" phenomenon and traditionally, there is no principled way to tackle this issue. People solve the problem by utilizing the special structure of the dynamic, and hence the analysis would be difficult to generalize. In this work, we present a streamlined three-step recipe to tackle the "chicken and egg" problem and give a general framework for analyzing stochastic dynamics in learning algorithms. Our framework composes standard techniques from probability theory, such as stopping time and martingale concentration. We demonstrate the power and flexibility of our framework by giving a unifying analysis for three very different learning problems with the last iterate and the strong uniform high probability convergence guarantee. The problems are stochastic gradient descent for strongly convex functions, streaming principal component analysis, and linear bandit with stochastic gradient descent updates. We either improve or match the state-of-the-art bounds on all three dynamics.
翻译:分析学习算法的挑战之一是客观价值和随机噪音之间的循环纠缠。 这也是所谓的“ 鸡蛋和鸡蛋”现象, 传统上没有原则性的方法解决这个问题。 人们利用动态的特殊结构解决问题, 因此分析很难概括。 在这项工作中, 我们提出了一个简化的三步配方, 以解决“ 鸡蛋和鸡蛋” 问题, 并为分析学习算法中的随机动态提供一个总体框架。 我们的框架从概率理论中形成了标准技术, 如停止时间和马丁格尔集中。 我们展示了我们框架的力量和灵活性, 通过对三种截然不同的学习问题进行统一分析, 与最后的循环和高度统一的高度概率趋同保证。 问题是, 强烈的 convex 函数、 流式主元件分析、 线性梯度梯度梯度下降更新的梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度梯度。 我们改进或匹配, 。