Many datasets are collected from multiple environments (e.g. different labs, perturbations, etc.), and it is often advantageous to learn models and relations that are invariant across environments. Invariance can improve robustness to unknown confounders and improve generalization to new domains. We develop a novel framework -- KL regression -- to reliably estimate regression coefficients in a challenging multi-environment setting, where latent confounders affect the data from each environment. KL regression is based on a new objective of simultaneously minimizing the KL- divergence between a parametric model and the observed data from each environment. We prove that KL regression recovers the true invariant factors under a flexible confounding setup. Moreover, it is computationally efficient as we derive an analytic solution for its global optimum. In systematic experiments, we validate the improved performance of KL regression compared to commonly used approaches.


翻译:许多数据集是从多种环境中收集的(例如不同的实验室、扰动等),学习各种环境之间变化不定的模式和关系往往有好处。不小心可以提高未知混杂者的稳健性,改进对新域的概括性。我们开发了一个新的框架 -- -- KL回归性 -- -- 以便在具有挑战性的多环境环境中可靠地估计回归系数,在这种环境中,潜伏的共振者影响来自每个环境的数据。KL回归性基于一个新的目标,即同时尽量减少一个参数模型与每个环境的观测数据之间的KL差异。我们证明,KL回归性在灵活组合的设置下恢复了真实的变量因素。此外,随着我们为其全球最佳性得出分析性解决方案,它具有计算效率。在系统实验中,我们验证了与常用方法相比,KL回归性回归性效果的改进。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年5月18日
专知会员服务
22+阅读 · 2021年4月10日
专知会员服务
51+阅读 · 2020年12月10日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月23日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
创业邦杂志
5+阅读 · 2019年3月27日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员