We propose a new estimator for the average causal effects of a binary treatment with panel data in settings with general treatment patterns. Our approach augments the two-way-fixed-effects specification with the unit-specific weights that arise from a model for the assignment mechanism. We show how to construct these weights in various settings, including situations where units opt into the treatment sequentially. The resulting estimator converges to an average (over units and time) treatment effect under the correct specification of the assignment model. We show that our estimator is more robust than the conventional two-way estimator: it remains consistent if either the assignment mechanism or the two-way regression model is correctly specified and performs better than the two-way-fixed-effect estimator if both are locally misspecified. This strong double robustness property quantifies the benefits from modeling the assignment process and motivates using our estimator in practice.
翻译:我们为在一般处理模式的环境下使用面板数据进行面板处理的平均因果效果提议一个新的估计值。 我们的方法将双向固定效应的规格与根据分配机制模型产生的单位特定重量相加。 我们展示了如何在各种情况下构建这些加权, 包括单位选择顺序处理的情形。 由此得出的估计值在分配模式的正确规格下会达到平均( 超过单位和时间) 的处理效果。 我们显示我们的估计值比传统的双向估测器更强: 如果指派机制或双向回归模型被正确指定, 并且如果两者均是本地错误指定, 其性能也比双向固定效应估量器好。 这种强烈的双向稳健性属性对模拟分配过程的好处进行了量化, 并在实践中使用我们的估量器进行激励。