Computational fluid dynamics (CFD) can be used to simulate vascular haemodynamics and analyse potential treatment options. CFD has shown to be beneficial in improving patient outcomes. However, the implementation of CFD for routine clinical use is yet to be realised. Barriers for CFD include high computational resources, specialist experience needed for designing simulation set-ups, and long processing times. The aim of this study was to explore the use of machine learning (ML) to replicate conventional aortic CFD with automatic and fast regression models. Data used to train/test the model comprised of 3,000 CFD simulations performed on synthetically generated 3D aortic shapes. These subjects were generated from a statistical shape model (SSM) built on real patient-specific aortas (N=67). Inference performed on 200 test shapes resulted in average errors of 6.01% +/-3.12 SD and 3.99% +/-0.93 SD for pressure and velocity, respectively. Our ML-based models performed CFD in ~0.075 seconds (4,000x faster than the solver). This study shows that results from conventional vascular CFD can be reproduced using ML at a much faster rate, in an automatic process, and with high accuracy.
翻译:计算流体动态(CFD)可用于模拟血管血管血管血管血管动动和分析可能的治疗方法。CFD已证明有利于改善病人的治疗结果。但是,用于常规临床治疗的CFD实施尚未实现。CFD的障碍包括高计算资源、设计模拟装置所需的专家经验以及长期处理时间。这项研究的目的是探索如何利用机器学习(ML)来复制常规血管血管血管血管动脉动动态和分析潜在治疗方法。数据用于培训/测试模型,模型包括3 000个以合成生成的3D芳心形状进行的3 000个CFD模拟。这些主题来自在实际病人专用肛门上建造的统计形状模型(SSM)(N=67);200个测试形状进行的推断分别导致6.01%+/3.12 SD和3.99%+/0.93SDD,用于压力和速度。我们基于ML的模型在~0.075秒(比求解器更快4 000x)进行CFDMFD。该研究显示,在高的自动复制率中,在高的MFDFD中,在高速度中,在高速度中,在MFDFMFMFD中,在高的复制速度中的结果在高的频率中,在MFDFDFD中,在MFD中,在高得多。