Hybrid ensemble, an essential branch of ensembles, has flourished in numerous machine learning problems, especially regression. Several studies have confirmed the importance of diversity; however, previous ensembles only consider diversity in the sub-model training stage, with limited improvement compared to single models. In contrast, this study selects and weights sub-models from a heterogeneous model pool automatically. It solves an optimization problem using an interior-point filtering linear-search algorithm. This optimization problem innovatively incorporates negative correlation learning as a penalty term, with which a diverse model subset can be selected. Experimental results show some meaningful points. Model pool construction requires different classes of models, with all possible parameter sets for each class as sub-models. The best sub-models from each class are selected to construct an NCL-based ensemble, which is far more better than the average of the sub-models. Furthermore, comparing with classical constant and non-constant weighting methods, NCL-based ensemble has a significant advantage in several prediction metrics. In practice, it is difficult to conclude the optimal sub-model for a dataset prior due to the model uncertainty. However, our method would achieve comparable accuracy as the potential optimal sub-models on RMSE metric. In conclusion, the value of this study lies in its ease of use and effectiveness, allowing the hybrid ensemble to embrace both diversity and accuracy.
翻译:混合组合是各种机器学习的必备分支,在很多机器学习问题中,特别是在回归方面,已经发扬光大。一些研究证实了多样性的重要性;然而,以前的组合只考虑次模型培训阶段的多样性,与单一模型相比,改进有限。与此相反,本研究从一个多样化的模型库中自动选择和加权子模型。它使用内部点过滤线性搜索算法来解决优化问题。这个优化问题以创新的方式将负面相关学习作为一种惩罚术语,可以选择不同的模型子集。实验结果显示一些有意义的点。模型库的构建需要不同类别的模型,每个类中的所有可能的参数组作为子模型。每个类中的最佳子模型被选定来构建一个基于NCL的组合。这比子模型的平均数要好得多。此外,与传统的常态和非一致加权法方法相比,基于NCL的组合组合在几个预测指标中有很大的优势。在实践中,很难为每个类中每个类中的所有可能的参数组群集,而每个类中最好的子模型都选择了以NCL为基础的组合组合组合组合组合组合组合,从而实现最佳的精确性。在模型中实现最佳的精确性,在模型中,因为在模型中,在模型中,在模型中,在模型中,在模型中可以实现最精确性模型中,在模型中,在模型中可以实现最佳的精确性方面,在模型中,在模型中,在模型中,在模型中,在模型中,在模型和模型的精确性上,在模型的精确性方面,在模型的精确性上,在模型中,在模型的精确性上,在模型中,在模型中,在模型中,在模型的精确性,在模型中,在模型的精确性,在模型中,在模型的精确性,在模型中,在模型中,在模型的精确性上,在模型中,在模型的精确性上,在模型中,在模型中,在模型中,在模型中,在模型中,在模型的精确性上,在模型中,在模型中,在模型的精确性上,在模型的精确性,在模型中,在模型中,在模型中,在模型的精确性上,在模型中,在模型中,在模型的精确性,在模型的精确性,在模型的精确性,在模型中