Assigning weights to a large pool of objects is a fundamental task in a wide variety of applications. In this article, we introduce the concept of structured high-dimensional probability simplexes, in which most components are zero or near zero and the remaining ones are close to each other. Such structure is well motivated by (i) high-dimensional weights that are common in modern applications, and (ii) ubiquitous examples in which equal weights -- despite their simplicity -- often achieve favorable or even state-of-the-art predictive performance. This particular structure, however, presents unique challenges partly because, unlike high-dimensional linear regression, the parameter space is a simplex and pattern switching between partial constancy and sparsity is unknown. To address these challenges, we propose a new class of double spike Dirichlet priors to shrink a probability simplex to one with the desired structure. When applied to ensemble learning, such priors lead to a Bayesian method for structured high-dimensional ensembles that is useful for forecast combination and improving random forests, while enabling uncertainty quantification. We design efficient Markov chain Monte Carlo algorithms for implementation. Posterior contraction rates are established to study large sample behaviors of the posterior distribution. We demonstrate the wide applicability and competitive performance of the proposed methods through simulations and two real data applications using the European Central Bank Survey of Professional Forecasters data set and a data set from the UC Irvine Machine Learning Repository (UCI).


翻译:将重力指派给大型天体库是多种应用中的一项基本任务。 在本条中, 我们引入了结构化高维概率简单度概念, 大部分部件为零或接近零, 其余的部件彼此接近。 这种结构的动机是:(一) 在现代应用中常见的高维重量, 以及(二) 各种例子, 等量( 尽管它们简单, 却往往能够取得优异甚至最先进的高级的预测性能) 。 然而, 这一特殊结构带来了独特的挑战, 部分原因是, 与高维线性线性回归不同, 参数空间是一个简单x和模式的转换, 在部分趋同性和宽度之间是未知的。 为了应对这些挑战, 我们提出一个新的等级是双倍加点Drichlet, 将概率简单到一个, 与理想的结构相匹配。 当应用于“ 感官学习” 时, 此类前几个例子导致一种巴耶斯的系统方法, 用于预测组合和改进随机森林, 同时, 使得不确定性的量化。 我们设计了一个高效的Markov 链 的竞争性应用性和模式, 在部分相异性应用Recar Carlooalal Adal 数据序列中, 将数据排序用于执行。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
161+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年10月24日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员