We often estimate a parameter of interest psi when the identifying conditions involve a nuisance parameter theta. Examples from causal inference are Inverse Probability Weighting, Marginal Structural Models and Structural Nested Models. To estimate treatment effects from observational data, these methods posit a (pooled) logistic regression model for the treatment and/or censoring probabilities and estimate these first. These methods are all based on unbiased estimating equations. First, we provide a general formula for the variance of the parameter of interest psi when the nuisance parameter theta is estimated in a first step, using the Partition Inverse Formula. Then, we present 4 results for estimators psi-hat based on unbiased estimating equations including a nuisance parameter theta which is estimated by solving (partial) score equations, if psi does not depend on theta. This regularly happens in causal inference if theta describes the treatment probabilities, in settings with missing data where theta describes the missingness probabilities, and settings with measurement error where theta describes the measurement error distribution. 1. Counter-intuitively, the limiting variance of psi-hat is typically smaller when theta is estimated, compared to if a known theta were plugged in. 2. If estimating theta is ignored, the resulting sandwich estimator for the variance of psi-hat is conservative. 3. A consistent estimator for the variance of psi-hat can provide results fast: no bootstrap. 4. If psi-hat with the true theta plugged in is efficient, the limiting variance of psi-hat does not depend on whether theta is estimated. To illustrate we use observational data to estimate 1. the effect of cazavi versus colistin in patients with resistant bacterial infections and 2. how the effect of one year of antiretroviral treatment depends on its initiation time in HIV-infected patients.


翻译:当识别条件包含一个破坏性参数时,我们经常估计一个利息参数 psi。 因果关系推断的例子有: 反概率比重、 边际结构模型和结构内嵌模型。 为了根据观察数据估算处理效果, 这些方法为处理和/ 或审查概率设定了一个( 集合的) 后勤回归模型, 并首先估算。 这些方法都基于公正的估计方程式。 首先, 我们提供一个通用公式, 用于在启动阶段估算坏性参数 psi 时, 利率参数的偏差。 在启动阶段估算病人变异性参数时, 我们提供一个通用公式。 然后, 我们为基于公正估算方程式的估定偏差 psihat phiat 得出4个结果, 包括一个通过解析( 部分) 分数估算结果, 如果 psi不依赖此方程式, 这些方法通常基于不偏差性估算结果 。 如果塔描述治疗结果的治疗概率, 在缺少数据的情况下, 我们的变异性参数会以4 。 在测量结果中, 变异性 和变异性处理环境, 将显示变异性处理结果 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
0+阅读 · 2022年10月13日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员