We consider estimation and inference for a regression coefficient in a panel setting with time and individual specific effects which follow a factor structure. Previous approaches to this model require a "strong factor" assumption, which allows the factors to be consistently estimated, thereby removing omitted variable bias due to the unobserved factors. We propose confidence intervals (CIs) that are robust to failure of this assumption, along with estimators that achieve better rates of convergence than previous methods when factors may be weak. Our approach applies the theory of minimax linear estimation to form a debiased estimate using a nuclear norm bound on the error of an initial estimate of the individual effects. In Monte Carlo experiments, we find a substantial improvement over conventional approaches when factors are weak, with little cost to estimation error when factors are strong.
翻译:我们考虑在按系数结构设定的时间和个别具体效果的小组设置中估计和推论回归系数。这一模型以前采用的方法要求有一个“强因数”假设,允许对各种因素进行一致估计,从而消除未观察到的因素造成的省略的可变偏差。我们建议采用信任期(CIs),以稳健地应对这一假设的失败,同时,在因素可能较弱的情况下,估算者比以往方法达到更好的趋同率。我们采用的方法是使用微负线性估算理论,利用受对个别影响的初步估计错误约束的核规范,形成偏差估计。在蒙特卡洛实验中,我们发现在因素薄弱时,常规方法有很大的改进,在因素强时估计错误的成本很小。