Learning from Demonstration (LfD) constitutes one of the most robust methodologies for constructing efficient cognitive robotic systems. Despite the large body of research works already reported, current key technological challenges include those of multi-agent learning and long-term autonomy. Towards this direction, a novel cognitive architecture for multi-agent LfD robotic learning is introduced, targeting to enable the reliable deployment of open, scalable and expandable robotic systems in large-scale and complex environments. In particular, the designed architecture capitalizes on the recent advances in the Artificial Intelligence (AI) field, by establishing a Federated Learning (FL)-based framework for incarnating a multi-human multi-robot collaborative learning environment. The fundamental conceptualization relies on employing multiple AI-empowered cognitive processes (implementing various robotic tasks) that operate at the edge nodes of a network of robotic platforms, while global AI models (underpinning the aforementioned robotic tasks) are collectively created and shared among the network, by elegantly combining information from a large number of human-robot interaction instances. Regarding pivotal novelties, the designed cognitive architecture a) introduces a new FL-based formalism that extends the conventional LfD learning paradigm to support large-scale multi-agent operational settings, b) elaborates previous FL-based self-learning robotic schemes so as to incorporate the human in the learning loop and c) consolidates the fundamental principles of FL with additional sophisticated AI-enabled learning methodologies for modelling the multi-level inter-dependencies among the robotic tasks. The applicability of the proposed framework is explained using an example of a real-world industrial case study for agile production-based Critical Raw Materials (CRM) recovery.


翻译:从演示中学习(LfD)是建立高效的认知机器人系统的最可靠方法之一。尽管已经报告了大量的研究工作,但目前的关键技术挑战包括多剂学习和长期自主。朝着这个方向,引入了多剂LfD机器人学习的新认知架构,目标是在大型和复杂环境中可靠地部署开放、可扩展和可扩展的机器人系统。特别是,设计架构利用人工智能(AI)领域的最新进展,建立了一个基于联邦学习(FL)的框架,用于培养多人类多机器人协作学习环境。基本概念化取决于采用多种AI-动力认知进程(实施各种机器人任务),在机器人平台网络的边缘点运作,而全球人工智能模型(支撑上述机器人任务)则是在网络中共同创建和共享的,通过将大量基于人类机器人的模型互动框架中的信息简洁地组合在一起,通过在核心的新颖的新颖的、设计认知架构中引入一个新的基于FL-精密的多种机器人合作学习环境,将基于FL-L的高级智能系统模型的大规模学习模式纳入到基于常规的常规的机能性循环中。

0
下载
关闭预览

相关内容

Cognition:Cognition:International Journal of Cognitive Science Explanation:认知:国际认知科学杂志。 Publisher:Elsevier。 SIT: http://www.journals.elsevier.com/cognition/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
3+阅读 · 2018年11月19日
Arxiv
3+阅读 · 2018年10月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员