The integration of Large Language Models (LLMs) into computer applications has introduced transformative capabilities but also significant security challenges. Existing safety alignments, which primarily focus on semantic interpretation, leave LLMs vulnerable to attacks that use non-standard data representations. This paper introduces ArtPerception, a novel black-box jailbreak framework that strategically leverages ASCII art to bypass the security measures of state-of-the-art (SOTA) LLMs. Unlike prior methods that rely on iterative, brute-force attacks, ArtPerception introduces a systematic, two-phase methodology. Phase 1 conducts a one-time, model-specific pre-test to empirically determine the optimal parameters for ASCII art recognition. Phase 2 leverages these insights to launch a highly efficient, one-shot malicious jailbreak attack. We propose a Modified Levenshtein Distance (MLD) metric for a more nuanced evaluation of an LLM's recognition capability. Through comprehensive experiments on four SOTA open-source LLMs, we demonstrate superior jailbreak performance. We further validate our framework's real-world relevance by showing its successful transferability to leading commercial models, including GPT-4o, Claude Sonnet 3.7, and DeepSeek-V3, and by conducting a rigorous effectiveness analysis against potential defenses such as LLaMA Guard and Azure's content filters. Our findings underscore that true LLM security requires defending against a multi-modal space of interpretations, even within text-only inputs, and highlight the effectiveness of strategic, reconnaissance-based attacks. Content Warning: This paper includes potentially harmful and offensive model outputs.
翻译:暂无翻译