Due to the absence of explicit connectives, implicit discourse relation recognition (IDRR) remains a challenging task in discourse analysis. The critical step for IDRR is to learn high-quality discourse relation representations between two arguments. Recent methods tend to integrate the whole hierarchical information of senses into discourse relation representations for multi-level sense recognition. Nevertheless, they insufficiently incorporate the static hierarchical structure containing all senses (defined as global hierarchy), and ignore the hierarchical sense label sequence corresponding to each instance (defined as local hierarchy). For the purpose of sufficiently exploiting global and local hierarchies of senses to learn better discourse relation representations, we propose a novel GLobal and LOcal Hierarchy-aware Contrastive Framework (GLOF), to model two kinds of hierarchies with the aid of contrastive learning. Experimental results on the PDTB dataset demonstrate that our method remarkably outperforms the current state-of-the-art model at all hierarchical levels.
翻译:由于缺乏明确的连接,隐含的谈话关系确认(IDRR)仍然是在对话分析中的一项艰巨任务。对于IDR来说,关键步骤是学习两种论点之间高质量的谈话关系表述。最近的方法倾向于将整个感官等级信息纳入讨论关系表述,以便多层次感知。然而,它们没有充分地纳入包含所有感官(定义为全球等级)的静态等级结构,忽视与每个情况相对应(定义为地方等级)的等级感标签序列。为了充分利用全球和地方感官等级来学习更好的对话关系表述,我们提议了一个新型的GLobal和Local Hierararchy-awary- Contractive框架(GLOF),以两种类型的等级结构为模型,辅助对比性学习。PDTB数据集的实验结果表明,我们的方法明显超越了目前所有等级层次的状态模式。