Affine image registration is a cornerstone of medical-image processing and analysis. While classical algorithms can achieve excellent accuracy, they solve a time-consuming optimization for every new image pair. Deep-learning (DL) methods learn a function that maps an image pair to an output transform. Evaluating the functions is fast, but capturing large transforms can be challenging, and networks tend to struggle if a test-image characteristic shifts from the training domain, such as the contrast or resolution. A majority of affine methods are also agnostic to the anatomy the user wishes to align; the registration will be inaccurate if algorithms consider all structures in the image. We address these shortcomings with a fast, robust, and easy-to-use DL tool for affine and deformable registration of any brain image without preprocessing, right off the MRI scanner. First, we rigorously analyze how competing architectures learn affine transforms across a diverse set of neuroimaging data, aiming to truly capture the behavior of methods in the real world. Second, we leverage a recent strategy to train networks with wildly varying images synthesized from label maps, yielding robust performance across acquisition specifics. Third, we optimize the spatial overlap of select anatomical labels, which enables networks to distinguish between anatomy of interest and irrelevant structures, removing the need for preprocessing that excludes content that would otherwise reduce the accuracy of anatomy-specific registration. We combine the affine model with prior work on deformable registration and test brain-specific registration across a landscape of MRI protocols unseen at training, demonstrating consistent and improved accuracy compared to existing tools. We distribute our code and tool at https://w3id.org/synthmorph, providing a single complete end-to-end solution for registration of brain MRI.
翻译:松动图像登记是医学图像处理和分析的基石。 虽然经典算法可以实现极精准, 但它可以解决每个新图像配对的耗时优化问题。 深学习( DL) 方法可以学习一个功能, 映射图像配制输出变异。 评估功能非常快, 捕捉大变异可能具有挑战性, 如果测试图像特征从培训领域( 如对比度或分辨率) 发生转变, 网络则会很困难。 大部分的趋同方法对于用户想要调整的解剖结构也是不可知的; 如果算法考虑到图像中的所有结构, 则会解决最耗时的优化。 我们用快速、 强、 容易使用的 DL 方法解决这些缺陷, 将图像配制成图像配对成一个图像配对结果, 并使用 DLLL 工具进行可变形的注册。 首先, 我们严格分析竞合的架构如何在各种神经成型模型中学会折叠的转变, 目的是真实地捕捉到现实世界中的方法行为。 其次, 我们利用最近的一项策略来训练网络, 将特定的具体图像合成图像合成图像综合地综合地分析, 比较精确地校正校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正的校正 。