Recent advances in autonomous robotic technologies have highlighted the growing need for precise environmental analysis. LiDAR semantic segmentation has gained attention to accomplish fine-grained scene understanding by acting directly on raw content provided by sensors. Recent solutions showed how different learning techniques can be used to improve the performance of the model, without any architectural or dataset change. Following this trend, we present a coarse-to-fine setup that LEArns from classification mistaKes (LEAK) derived from a standard model. First, classes are clustered into macro groups according to mutual prediction errors; then, the learning process is regularized by: (1) aligning class-conditional prototypical feature representation for both fine and coarse classes, (2) weighting instances with a per-class fairness index. Our LEAK approach is very general and can be seamlessly applied on top of any segmentation architecture; indeed, experimental results showed that it enables state-of-the-art performances on different architectures, datasets and tasks, while ensuring more balanced class-wise results and faster convergence.


翻译:自主机器人技术的最近进展突出表明了对精确环境分析的日益需要。LiDAR 语义分割已经引起注意,通过直接使用传感器提供的原始内容,通过直接使用传感器提供的原始内容,实现精细的场景理解。最近的解决办法表明,如何使用不同的学习技术来改进模型的性能,而没有任何建筑或数据集的变化。在这一趋势之后,我们提出了一个粗略到细微的设置,从标准模型产生的分类错误(LEAKes)中产生。首先,根据相互的预测错误,将类别分组为宏观组;然后,学习过程的常规化是:(1) 将精细和粗粗的班级的类有条件的原型特征代表相匹配,(2) 以单级公平指数加权实例。我们的 " 通缩 " 方法非常笼统,可以在任何分解结构上无缝地应用;事实上,实验结果表明,它能够在不同结构、数据集和任务上实现最先进的性能,同时确保更平衡的类比结果和更快的趋同。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员