Recent advances in autonomous robotic technologies have highlighted the growing need for precise environmental analysis. LiDAR semantic segmentation has gained attention to accomplish fine-grained scene understanding by acting directly on raw content provided by sensors. Recent solutions showed how different learning techniques can be used to improve the performance of the model, without any architectural or dataset change. Following this trend, we present a coarse-to-fine setup that LEArns from classification mistaKes (LEAK) derived from a standard model. First, classes are clustered into macro groups according to mutual prediction errors; then, the learning process is regularized by: (1) aligning class-conditional prototypical feature representation for both fine and coarse classes, (2) weighting instances with a per-class fairness index. Our LEAK approach is very general and can be seamlessly applied on top of any segmentation architecture; indeed, experimental results showed that it enables state-of-the-art performances on different architectures, datasets and tasks, while ensuring more balanced class-wise results and faster convergence.
翻译:自主机器人技术的最近进展突出表明了对精确环境分析的日益需要。LiDAR 语义分割已经引起注意,通过直接使用传感器提供的原始内容,通过直接使用传感器提供的原始内容,实现精细的场景理解。最近的解决办法表明,如何使用不同的学习技术来改进模型的性能,而没有任何建筑或数据集的变化。在这一趋势之后,我们提出了一个粗略到细微的设置,从标准模型产生的分类错误(LEAKes)中产生。首先,根据相互的预测错误,将类别分组为宏观组;然后,学习过程的常规化是:(1) 将精细和粗粗的班级的类有条件的原型特征代表相匹配,(2) 以单级公平指数加权实例。我们的 " 通缩 " 方法非常笼统,可以在任何分解结构上无缝地应用;事实上,实验结果表明,它能够在不同结构、数据集和任务上实现最先进的性能,同时确保更平衡的类比结果和更快的趋同。