The Latent Space Clustering in Generative adversarial networks (ClusterGAN) method has been successful with high-dimensional data. However, the method assumes uniformlydistributed priors during the generation of modes, which isa restrictive assumption in real-world data and cause loss ofdiversity in the generated modes. In this paper, we proposeself-augmentation information maximization improved Clus-terGAN (SIMI-ClusterGAN) to learn the distinctive priorsfrom the data. The proposed SIMI-ClusterGAN consists offour deep neural networks: self-augmentation prior network,generator, discriminator and clustering inference autoencoder.The proposed method has been validated using seven bench-mark data sets and has shown improved performance overstate-of-the art methods. To demonstrate the superiority ofSIMI-ClusterGAN performance on imbalanced dataset, wehave discussed two imbalanced conditions on MNIST datasetswith one-class imbalance and three classes imbalanced cases.The results highlight the advantages of SIMI-ClusterGAN.
翻译:在生成对抗网络(ClusterGAN)中,隐性空间集群法(ClusterGAN)在高维数据方面是成功的,但是,该方法在生成模式时采用了统一分布的前缀,这是对现实世界数据的一种限制性假设,造成生成模式多样性的丧失。在本文件中,我们提出自我放大信息最大化改进了Clus-terGAN(SIMI-ClusterGAN),以了解数据的独特前缀。拟议的SIMI-ClusterGAN由四种深层神经网络组成:自我放大前网络、生成器、区分器和集成自动编码器。提议的方法已经使用七套基准数据集验证,并显示性能优于艺术状态。为显示SIMI-ClusterGAN在不平衡数据集上的优异性表现,我们讨论了具有一等不平衡和三类不平衡案例的两种不平衡状况。结果突出了SIMI-ClusterGAN的优势。