Retrosynthetic planning is a fundamental problem in chemistry for finding a pathway of reactions to synthesize a target molecule. Recently, search algorithms have shown promising results for solving this problem by using deep neural networks (DNNs) to expand their candidate solutions, i.e., adding new reactions to reaction pathways. However, the existing works on this line are suboptimal; the retrosynthetic planning problem requires the reaction pathways to be (a) represented by real-world reactions and (b) executable using "building block" molecules, yet the DNNs expand reaction pathways without fully incorporating such requirements. Motivated by this, we propose an end-to-end framework for directly training the DNNs towards generating reaction pathways with the desirable properties. Our main idea is based on a self-improving procedure that trains the model to imitate successful trajectories found by itself. We also propose a novel reaction augmentation scheme based on a forward reaction model. Our experiments demonstrate that our scheme significantly improves the success rate of solving the retrosynthetic problem from 86.84% to 96.32% while maintaining the performance of DNN for predicting valid reactions.
翻译:重新合成规划是化学中寻找反应途径以合成目标分子的一个根本问题。 最近, 搜索算法通过使用深神经网络( DNNs) 来扩大其候选解决方案, 即增加对反应路径的新反应。 但是, 这条线上的现有工程不尽理想; 回合成规划问题要求反应路径:(a) 以真实世界的反应为代表, (b) 使用“ 建筑块” 分子可执行, 而DNNs则扩大反应路径而不完全纳入这些要求。 我们为此提出一个端到端框架, 直接培训 DNNs 以生成与理想属性相适应的反应路径。 我们的主要想法是基于一个自我改进的程序, 来训练模型, 以模拟它本身发现的成功轨迹。 我们还提出一个基于前方反应模型的新的反应增强计划。 我们的实验表明, 我们的计划极大地提高了解决后合成问题的成功率, 从86.84% 到96.32%。 同时保持 DNNS 有效反应的性能预测有效反应的性能。