Hamiltonian simulation is a domain where quantum computers have the potential to outperform their classical counterparts due to their inherent quantum behavior. One of the main challenges of such quantum algorithms is up-scaling the system size, which is necessary to achieve meaningful quantum advantage. In this work, we present an approach to improve the scalability of eigenspace filtering for the ground state preparation of a given Hamiltonian. Our method aims to tackle limitations introduced by a small spectral gap and high degeneracy of low energy states. It is based on an adaptive sequence of eigenspace filtering through Quantum Eigenvalue Transformation of Unitary Matrices (QETU) followed by spectrum profiling. By combining our proposed algorithm with state-of-the-art phase estimation methods, we achieved good approximations for the ground state energy with local, two-qubit gate depolarizing probability up to $10^{-4}$. To demonstrate the key results in this work, we ran simulations with the transverse-field Ising Model on classical computers using Qiskit. We compare the performance of our approach with the static implementation of QETU and show that we can consistently achieve three to four orders of magnitude improvement in the absolute error rate.
翻译:暂无翻译