Standard discontinuous Galerkin methods, based on piecewise polynomials of degree $ \qq=0,1$, are considered for temporal semi-discretization for second order hyperbolic equations. The main goal of this paper is to present a simple and straightforward a priori error analysis of optimal order with minimal regularity requirement on the solution. Uniform norm in time error estimates are also proved. To this end, energy identities and stability estimates of bthe discrete problem are proved for a slightly more general problem. These are used to prove optimal order a priori error estimates with minimal regularity requirement on the solution. The combination with the classic continuous Galerkin finite element discretization in space variable is used, to formulate a full-discrete scheme. The a priori error analysis is presented. Numerical experiments are performed to verify the theoretical results.
翻译:标准不连续的Galerkin方法基于小巧的多角度度多角度法,以 $\qq=0,1美元为基础,用于对二阶双曲方程进行时间半分解。本文件的主要目的是对最佳顺序进行简单和直截了当的先验错误分析,对解决方案的规律性要求最小。还证明了时间错误估计的统一规范。为此,对一个略为一般性的问题,证明了对离散问题的能量特性和稳定性估计值。这些方法用来证明最优化的顺序是先验错误估计,对解决方案的规律性要求最小。使用与空间变量中典型的连续的Galerkin有限元素分解的组合,以制定一个完全分解的系统。提出了先验误分析。进行了数值实验,以核实理论结果。