We present OBMeshfree, an Optimization-Based Meshfree solver for compactly supported nonlocal integro-differential equations (IDEs) that can describe material heterogeneity and brittle fractures. OBMeshfree is developed based on a quadrature rule calculated via an equality constrained least square problem to reproduce exact integrals for polynomials. As such, a meshfree discretization method is obtained, whose solution possesses the asymptotically compatible convergence to the corresponding local solution. Moreover, when fracture occurs, this meshfree formulation automatically provides a sharp representation of the fracture surface by breaking bonds, avoiding the loss of mass. As numerical examples, we consider the problem of modeling both homogeneous and heterogeneous materials with nonlocal diffusion and peridynamics models. Convergences to the analytical nonlocal solution and to the local theory are demonstrated. Finally, we verify the applicability of the approach to realistic problems by reproducing high-velocity impact results from the Kalthoff-Winkler experiments. Discussions on possible immediate extensions of the code to other nonlocal diffusion and peridynamics problems are provided. OBMeshfree is freely available on GitHub.
翻译:我们提出了OBMEshfree, 一种基于优化的、基于最佳的、无网格的解决方案, 用于描述物质异质性和易碎裂的不当地差异方程式(IDE),OBMEshfree是根据一个通过平等的、受限制的、最小的问题计算的二次曲线规则开发的,以复制多元体的精密构件。因此,我们获得了一种无网格的离散方法,其解决方案具有与相应的本地解决方案的无瞬间兼容的趋同性。此外,当骨折发生时,这种网格配方会自动通过断结链,为断裂表面提供一个清晰的外形表示,避免质量损失。作为数字示例,我们考虑了以非局部扩散和边缘动力模型为同一和多元材料建模的问题。我们展示了对非局部分析解决方案和本地理论的趋同性。最后,我们通过复制Kalthoff- Winkler实验产生的高速度影响,来核实该方法是否适用于现实的问题。关于将代码立即扩展至其他非局部扩散和半动力学问题的讨论是可用的。