In this paper, we consider a nonlinear filtering model with observations driven by correlated Wiener processes and point processes. We first derive a Zakai equation whose solution is a unnormalized probability density function of the filter solution. Then we apply a splitting-up technique to decompose the Zakai equation into three stochastic differential equations, based on which we construct a splitting-up approximate solution and prove its half-order convergence. Furthermore, we apply a finite difference method to construct a time semi-discrete approximate solution to the splitting-up system and prove its half-order convergence to the exact solution of the Zakai equation. Finally, we present some numerical experiments to demonstrate the theoretical analysis.
翻译:在本文中, 我们考虑一个非线性过滤模型, 由相关 Wiener 进程和点点进程驱动的观测结果。 我们首先得出一个Zakai 方程式, 其解决方案是过滤器解决方案的未正常概率密度函数。 然后我们运用分裂技术将Zakai 方程式分解成三个随机差分方程式, 在此基础上我们构建了一个分裂近似解决方案, 并证明其半级趋同。 此外, 我们运用了一种有限差异方法, 来构建一个时间半分近似解决方案, 以构建分裂系统, 并证明它与Zakai 方程式的确切解决方案半级趋同。 最后, 我们提出一些数字实验来展示理论分析 。