We consider the numerical approximation of Gaussian random fields on closed surfaces defined as the solution to a fractional stochastic partial differential equation (SPDE) with additive white noise. The SPDE involves two parameters controlling the smoothness and the correlation length of the Gaussian random field. The proposed numerical method relies on the Balakrishnan integral representation of the solution and does not require the approximation of eigenpairs. Rather, it consists of a sinc quadrature coupled with a standard surface finite element method. We provide a complete error analysis of the method and illustrate its performances by several numerical experiments.
翻译:我们认为,封闭表面上的高斯随机字段的数值近似值是用添加白噪音的微分随机部分差分方程(SPDE)的解决方案。SPDE涉及控制高斯随机字段的平滑度和相关性长度的两个参数。拟议的数字方法依赖于解决方案的Balakrishnan整体表示法,而不需要egenpairs近近似值。相反,它包含一个二次二次方形,加上一个标准的表面限制元素方法。我们提供了方法的全面错误分析,并通过数项实验来说明其性能。