We propose GeoGCN, a novel geometric dual-domain graph convolution network for point cloud denoising (PCD). Beyond the traditional wisdom of PCD, to fully exploit the geometric information of point clouds, we define two kinds of surface normals, one is called Real Normal (RN), and the other is Virtual Normal (VN). RN preserves the local details of noisy point clouds while VN avoids the global shape shrinkage during denoising. GeoGCN is a new PCD paradigm that, 1) first regresses point positions by spatialbased GCN with the help of VNs, 2) then estimates initial RNs by performing Principal Component Analysis on the regressed points, and 3) finally regresses fine RNs by normalbased GCN. Unlike existing PCD methods, GeoGCN not only exploits two kinds of geometry expertise (i.e., RN and VN) but also benefits from training data. Experiments validate that GeoGCN outperforms SOTAs in terms of both noise-robustness and local-and-global feature preservation.
翻译:我们提议GeoGCN,这是一个用于点云分解(PCD)的新颖的两面图谱变异网络。除了PCD的传统智慧外,为了充分利用点云的几何信息,我们定义了两种表面正常,一种叫“Real Ormal”(RN),另一种叫“虚拟正常(VN) 。RN 保存了热点云的当地细节,而VN 则避免了在拆离过程中的全球形状缩小。GeoGCN是一个新的PCD范例,它:(1) 在VNs的帮助下,首先通过基于空间的GCN返回点位置位置,2)然后通过对回归点进行主要组成部分分析来估计初始RN,3)最后用普通GCN进行初步RN。与现有的PCD方法不同的是,GeoGCN不仅利用了两种类型的地球测量专门知识(即RN和VN),而且还从培训数据中受益。实验证实GeoGCN在噪音破坏和当地及全球地貌保护方面超越SATA。