In this paper, we first study the projections onto the set of unit dual quaternions, and the set of dual quaternion vectors with unit norms. Then we propose a power method for computing the dominant eigenvalue of a dual quaternion Hermitian matrix, and show its convergence and convergence rate under mild conditions. Based upon these, we reformulate the simultaneous localization and mapping (SLAM) problem as a rank-one dual quaternion completion problem. A two-block coordinate descent method is proposed to solve this problem. One block subproblem can be reduced to compute the best rank-one approximation of a dual quaternion Hermitian matrix, which can be computed by the power method. The other block has a closed-form solution. Numerical experiments are presented to show the efficiency of our proposed power method.
翻译:本文首先研究了投影到单位双四元数集合和具有单位范数的双四元数向量集合。然后,我们提出了一种幂法计算双四元数共轭矩阵的主特征值,并证明了在温和条件下的收敛性和收敛速度。在此基础上,我们将同时定位和映射(SLAM)问题重新表述为一个秩一双四元数完成问题。我们提出了一个双块坐标下降方法来解决这个问题。其中一个块的子问题可以归约为计算双四元数共轭矩阵的最佳秩一逼近,这可以通过幂法计算。另一个块具有闭合形式的解。我们提供了数值实验来展示我们提出的幂法的效率。