Recent image matting studies are developing towards proposing trimap-free or interactive methods for complete complex image matting tasks. Although avoiding the extensive labors of trimap annotation, existing methods still suffer from two limitations: (1) For the single image with multiple objects, it is essential to provide extra interaction information to help determining the matting target; (2) For transparent objects, the accurate regression of alpha matte from RGB image is much more difficult compared with the opaque ones. In this work, we propose a Unified Interactive image Matting method, named UIM, which solves the limitations and achieves satisfying matting results for any scenario. Specifically, UIM leverages multiple types of user interaction to avoid the ambiguity of multiple matting targets, and we compare the pros and cons of different annotation types in detail. To unify the matting performance for transparent and opaque objects, we decouple image matting into two stages, i.e., foreground segmentation and transparency prediction. Moreover, we design a multi-scale attentive fusion module to alleviate the vagueness in the boundary region. Experimental results demonstrate that UIM achieves state-of-the-art performance on the Composition-1K test set and a synthetic unified dataset. Our code and models will be released soon.
翻译:最近的图像交配研究正在逐步形成,目的是为完整的复杂图像交配任务提出不设底线或互动的方法。虽然避免了细图批注的广泛工作量,但现有方法仍受到两个限制:(1) 对于带有多个对象的单一图像,必须提供额外的互动信息,以帮助确定交配目标;(2) 对于透明对象,从 RGB 图像中准确回归alpha matte比不透明对象要困难得多。在这项工作中,我们提出了名为 UIM 的统一互动图像交配方法,以解决局限性,并实现满足任何情景的交配结果。具体来说,UIM 利用多种类型的用户互动来避免多个交配目标的模糊性,并且我们详细比较不同批注种类的利弊。为了统一透明和不透明对象的交配性性,我们将图像分解成两个阶段,即地段分割和透明度预测。此外,我们设计了一个多尺度的注意聚合模块,以缓解边界区域的模糊性差。实验结果显示,UIM将很快实现一个合成模型的合成模型。