Due to label scarcity and covariate shift happening frequently in real-world studies, transfer learning has become an essential technique to train models generalizable to some target populations using existing labeled source data. Most existing transfer learning research has been focused on model estimation, while there is a paucity of literature on transfer inference for model accuracy despite its importance. We propose a novel $\mathbf{D}$oubly $\mathbf{R}$obust $\mathbf{A}$ugmented $\mathbf{M}$odel $\mathbf{A}$ccuracy $\mathbf{T}$ransfer $\mathbf{I}$nferen$\mathbf{C}$e (DRAMATIC) method for point and interval estimation of commonly used classification performance measures in an unlabeled target population using labeled source data. Specifically, DRAMATIC derives and evaluates the risk model for a binary response $Y$ against some low dimensional predictors $\mathbf{A}$ on the target population, leveraging $Y$ from source data only and high dimensional adjustment features $\mathbf{X}$ from both the source and target data. The proposed estimators are doubly robust in the sense that they are $n^{1/2}$ consistent when at least one model is correctly specified and certain model sparsity assumptions hold. Simulation results demonstrate that the point estimation have negligible bias and the confidence intervals derived by DRAMATIC attain satisfactory empirical coverage levels. We further illustrate the utility of our method to transfer the genetic risk prediction model and its accuracy evaluation for type II diabetes across two patient cohorts in Mass General Brigham (MGB) collected using different sampling mechanisms and at different time points.
翻译:由于在现实世界的研究中经常发生标签短缺和变换,转移学习已成为一种必不可少的技术,用现有的标签源数据对一些目标人群进行通用模型培训,使用现有的标签源数据。现有的转移学习研究大多侧重于模型估算,而尽管模型精确度的转移推断文献却很少。我们建议使用标签源代码模型,在无标签目标人群中采用美元=mathbf{R}美元=obbust$\mathbf{A}授权美元=mathbf{M}美元=美元=美元=美元=美元=mathbf{A}美元=美元=美元=美元=美元=准确度,对一些目标人群进行通用的分类性能评估。在使用标签源代码模型模型数据,DRAMAICI的精确度估算模型和对一些低度预测值的准确性能评估 $$=美元=美元=mathb=美元=美元=美元=美元=美元=Tranfer granfer 美元=美元=美元=美元=lorreal deal devoal deal dal dal diesal dal dal dal dies sal dies sal dal dies the dal dies the dregreal dreal dreal thes thes sal lient sal be sal sal be lam sal be the sal be the sal be lam lad the lad the sald the sal ligations be sald the slations sal sal sal lad the slationd legations lad lad the sld lad the sal lats the sld lad the sald the sald thes sald the sl the sl the sald the sald the salds saldalds leds sald thes the sal sal saldaldal sal sal sal sal sal sal sal sal sal sal sal sal sal sald ex the salds ladaldaldal sal sal ex ex ex ex ex lats a sal sal sal