We focus on causal discovery in the presence of measurement error in linear systems where the mixing matrix, i.e., the matrix indicating the independent exogenous noise terms pertaining to the observed variables, is identified up to permutation and scaling of the columns. We demonstrate a somewhat surprising connection between this problem and causal discovery in the presence of unobserved parentless causes, in the sense that there is a mapping, given by the mixing matrix, between the underlying models to be inferred in these problems. Consequently, any identifiability result based on the mixing matrix for one model translates to an identifiability result for the other model. We characterize to what extent the causal models can be identified under a two-part faithfulness assumption. Under only the first part of the assumption (corresponding to the conventional definition of faithfulness), the structure can be learned up to the causal ordering among an ordered grouping of the variables but not all the edges across the groups can be identified. We further show that if both parts of the faithfulness assumption are imposed, the structure can be learned up to a more refined ordered grouping. As a result of this refinement, for the latent variable model with unobserved parentless causes, the structure can be identified. Based on our theoretical results, we propose causal structure learning methods for both models, and evaluate their performance on synthetic data.
翻译:在线性系统中存在测量错误时,我们注重因果发现,因为线性系统中存在测量错误,混合矩阵,即显示与观察到的变量有关的独立外源噪音术语的矩阵,被确定为两个部分的忠实性假设可以在多大程度上确定因果模型。我们展示了这一问题与在未观测到的无父母原因情况下的因果发现之间的某种令人惊讶的联系,因为混合矩阵显示,在这些问题中,要推断出的基本模型之间存在一种因果关系。因此,基于一种模型混合矩阵的任何可识别性结果,即表明与观察到的变量有关的独立外源噪音术语的矩阵,可转化为另一个模型的可识别性结果。我们用两种不同的假设性假设性假设性假设性假设性可以在多大程度上被确定为一种可识别性结果。在假设性的第一部分(与传统的忠诚性定义相对应)下,结构可以学到某种令人惊讶的因果性,因为根据一个有秩序的变量组合性模型,但不能辨明所有各组之间的边缘。我们进一步表明,如果将一个模型中的两个部分都设定为真实性假设性假设性假设性,那么结构可以学习到一个更精确的组合性结果。我们通过这一精细的组合性模型,作为改进的结果,作为改进的结果,作为改进的结果,为了改进的结果,我们据以学习了两个结构的模型的模型的模型的理论性模型的模型的模型,可以用来学习。