This paper presents the use of spike-and-slab (SS) priors for discovering governing differential equations of motion of nonlinear structural dynamic systems. The problem of discovering governing equations is cast as that of selecting relevant variables from a predetermined dictionary of basis variables and solved via sparse Bayesian linear regression. The SS priors, which belong to a class of discrete-mixture priors and are known for their strong sparsifying (or shrinkage) properties, are employed to induce sparse solutions and select relevant variables. Three different variants of SS priors are explored for performing Bayesian equation discovery. As the posteriors with SS priors are analytically intractable, a Markov chain Monte Carlo (MCMC)-based Gibbs sampler is employed for drawing posterior samples of the model parameters; the posterior samples are used for variable selection and parameter estimation in equation discovery. The proposed algorithm has been applied to four systems of engineering interest, which include a baseline linear system, and systems with cubic stiffness, quadratic viscous damping, and Coulomb damping. The results demonstrate the effectiveness of the SS priors in identifying the presence and type of nonlinearity in the system. Additionally, comparisons with the Relevance Vector Machine (RVM) - that uses a Student's-t prior - indicate that the SS priors can achieve better model selection consistency, reduce false discoveries, and derive models that have superior predictive accuracy. Finally, the Silverbox experimental benchmark is used to validate the proposed methodology.


翻译:本文展示了使用钉钉和板块(SS)前程来发现非线性结构动态系统运动的差别方程式。 发现管理方程的问题表现在从基础变量的预设字典中选择相关变量上, 并通过稀有的巴伊西亚线性回归解决。 属于离散混合前程的SS前程, 因其很强的累进( 缩进) 特性而闻名的 SS 前程用于诱发稀疏的解决方案和选择相关变量。 探索了三个不同的SS前程变异方程式来进行巴耶西亚方程式的发现。 由于SS前程的后方程式在分析上很棘手, 以 Markov 链 Monte Carlo (MC) 为基础的 Gibs 采样器用于绘制模型的外观样品; 后方格样本用于变异选和方程式的参数估计。 提议的算法已应用于四个工程利益系统, 其中包括一个基线线性系统, 和具有立方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方方

0
下载
关闭预览

相关内容

专知会员服务
62+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月21日
Arxiv
0+阅读 · 2021年1月20日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员