Experimental designs based on the classical D-optimal criterion minimize the volume of the linear-approximation inference regions for the parameters using local sensitivity coefficients. For nonlinear models, these designs can be unreliable because the linearized inference regions do not always provide a true indication of the exact parameter inference regions. In this article, we apply the profile-based sensitivity coefficients developed by Sulieman et.al. [12] in designing D-optimal experiments for parameter estimation in some selected nonlinear models. Profile-based sensitivity coefficients are defined by the total derivative of the model function with respect to the parameters. They have been shown to account for both parameter co-dependencies and model nonlinearity up to second order-derivative. This work represents a first attempt to construct experiments using profile-based sensitivity coefficients. Two common nonlinear models are used to illustrate the computational aspects of the profile-based designs and simulation studies are conducted to demonstrate the efficiency of the constructed experiments.


翻译:根据古典D-最佳标准进行的实验设计尽量减少了使用当地敏感系数参数的线性接近性推断区域的数量。对于非线性模型来说,这些设计可能不可靠,因为线性推断区域并不总是能真实地显示精确参数推断区域。在本条中,我们应用Sulieman et.al.[12]在设计一些选定的非线性模型参数估计的D-最优性实验时,采用Sulieman et.al.[12]基于剖析性敏感系数。基于剖析性敏感系数是由模型函数在参数方面的总衍生物界定的。这些系数被显示既考虑到参数共同依赖性,又考虑到模型的不线性,直到第二线性。这项工作是首次尝试利用基于剖析性敏感系数进行实验。使用两个共同的非线性模型来说明基于剖度的设计和模拟研究的计算方面。进行了两个共同的非线性模型来说明基于剖析图的设计和模拟研究,以证明所建实验的效率。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
10+阅读 · 2019年3月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员