Experimental designs based on the classical D-optimal criterion minimize the volume of the linear-approximation inference regions for the parameters using local sensitivity coefficients. For nonlinear models, these designs can be unreliable because the linearized inference regions do not always provide a true indication of the exact parameter inference regions. In this article, we apply the profile-based sensitivity coefficients developed by Sulieman et.al. [12] in designing D-optimal experiments for parameter estimation in some selected nonlinear models. Profile-based sensitivity coefficients are defined by the total derivative of the model function with respect to the parameters. They have been shown to account for both parameter co-dependencies and model nonlinearity up to second order-derivative. This work represents a first attempt to construct experiments using profile-based sensitivity coefficients. Two common nonlinear models are used to illustrate the computational aspects of the profile-based designs and simulation studies are conducted to demonstrate the efficiency of the constructed experiments.
翻译:根据古典D-最佳标准进行的实验设计尽量减少了使用当地敏感系数参数的线性接近性推断区域的数量。对于非线性模型来说,这些设计可能不可靠,因为线性推断区域并不总是能真实地显示精确参数推断区域。在本条中,我们应用Sulieman et.al.[12]在设计一些选定的非线性模型参数估计的D-最优性实验时,采用Sulieman et.al.[12]基于剖析性敏感系数。基于剖析性敏感系数是由模型函数在参数方面的总衍生物界定的。这些系数被显示既考虑到参数共同依赖性,又考虑到模型的不线性,直到第二线性。这项工作是首次尝试利用基于剖析性敏感系数进行实验。使用两个共同的非线性模型来说明基于剖度的设计和模拟研究的计算方面。进行了两个共同的非线性模型来说明基于剖析图的设计和模拟研究,以证明所建实验的效率。