The problem of private data disclosure is studied from an information theoretic perspective. Considering a pair of dependent random variables $(X,Y)$, where $X$ and $Y$ denote the private and useful data, respectively, the following problem is addressed: What is the maximum information that can be revealed about $Y$ (measured by mutual information $I(Y;U)$, in which $U$ is the revealed data), while disclosing no information about $X$ (captured by the condition of statistical independence, i.e., $X\independent U$, and henceforth, called \textit{perfect privacy})? We analyze the supremization of \textit{utility}, i.e., $I(Y;U)$ under the condition of perfect privacy for two scenarios: \textit{output perturbation} and \textit{full data observation} models, which correspond to the cases where a Markov kernel, called \textit{privacy-preserving mapping}, applies to $Y$ and the pair $(X,Y)$, respectively. When both $X$ and $Y$ have a finite alphabet, the linear algebraic analysis involved in the solution provides some interesting results, such as upper/lower bounds on the size of the released alphabet and the maximum utility. Afterwards, it is shown that for the jointly Gaussian $(X,Y)$, perfect privacy is not possible in the output perturbation model in contrast to the full data observation model. Finally, an asymptotic analysis is provided to obtain the rate of released information when a sufficiently small leakage is allowed. In particular, in the context of output perturbation model, it is shown that this rate is always finite when perfect privacy is not feasible, and two lower bounds are provided for it; When perfect privacy is feasible, it is shown that under mild conditions, this rate becomes unbounded.
翻译:私自数据披露问题从信息理论的角度研究。 考虑到一对依赖性随机变量$(X,Y)美元(X美元),其中美元和美元分别表示私人和有用数据,我们解决了以下问题:关于Y$的最大信息是什么(用相互信息衡量的$I(Y;U)美元,其中美元是披露的数据),而没有披露关于X美元的信息(根据统计独立性的条件,即:x美元独立U$,此后称为\textit{perfect precility})?我们分析了关于美元的最大信息是什么(根据相互信息衡量的$I(Y;U)美元(美元),其中美元为披露的数据是美元;在两种情况中,当Smarkoov(cilenel,即美元),这个数据是免费的。 当一个模型显示的是真实性(x), 当这个模型显示的是真实性时, 美元(x) 美元和双程的最大值的值值的值值值值值值值是美元, 当一个解算算时, 当这个模型显示的是完全性时, 美元和最高级的值的值的值是解算算算算, 当一个正常的值中, 当它显示的值中, 美元和最高级的值的值中, 当一个最值的值的值的值的值的值的值的值的值中, 当它显示的输出值中, 当它显示的输出值的输出值是正值的输出值的输出值是比值是比值是比值是比值是比值是比值是比值 。