This paper presents a novel data-driven strategy to choose the hyperparameter $k$ in the $k$-NN regression estimator. We treat the problem of choosing the hyperparameter as an iterative procedure (over $k$) and propose using an easily implemented in practice strategy based on the idea of early stopping and the minimum discrepancy principle. This model selection strategy is proven to be minimax-optimal, under the fixed-design assumption on covariates, over some smoothness function classes, for instance, the Lipschitz functions class on a bounded domain. After that, the novel strategy shows consistent simulation results on artificial and real-world data sets in comparison to other model selection strategies, such as the Hold-out method and generalized cross-validation. The novelty of the strategy comes from reducing the computational time of the model selection procedure while preserving the statistical (minimax) optimality of the resulting estimator. More precisely, given a sample of size $n$, if one should choose $k$ among $\left\{ 1, \ldots, n \right\}$, the strategy reduces the computational time of the generalized cross-validation or Akaike's AIC criteria from $\mathcal{O}\left( n^3 \right)$ to $\mathcal{O}\left( n^2 (n - k) \right)$, where $k$ is the proposed (minimum discrepancy principle) value of the nearest neighbors.
翻译:本文展示了一种由数据驱动的新策略, 以选择$k$- NN 回归验证器中的超参数 $k美元 。 我们把选择超参数的问题当作一个迭代程序( 超过 $k$ ), 并提议使用基于早期停止和最小差异原则的简单实际战略。 这个模式选择策略被证明是小型最大最佳的, 在固定设计假设的共变假设下, 超越某些平滑功能类别, 比如, Lipschitz 函数类在约束域中。 在此之后, 新的策略将人造和真实世界数据集的模拟结果与其他模式选择战略相比是一致的, 如 Hold-out 方法和通用交叉校验。 战略的新颖在于缩短模型选择程序的计算时间, 同时保留由此得出的估计值的统计( 最小) 最佳性。 更精确地说, 如果在 $left\ 1,\ ldots, ncrick$, n_\\\ kright right 原则中选择 美元, 战略会降低 A- pral- reck rick ral exal exal ration ration rational ration rational ration ration rational rence a- cal rational rational rational rational $.