We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretised approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal Metropolis--Hastings, a particle filter, randomised multilevel Monte Carlo, and importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretisation as the number of Markov chain iterations increases. We give convergence results and recommend allocations for algorithm inputs. Our method admits a straightforward parallelisation, and can be computationally efficient. The user-friendly approach is illustrated on three examples, where the underlying diffusion is an Ornstein--Uhlenbeck process, a geometric Brownian motion, and a 2d non-reversible Langevin equation.
翻译:我们开发了一种无离散偏差的贝叶斯推论方法,用于分解和噪音的散射。 与现有的不偏倚的推论方法不同, 我们的方法并不依赖精确的模拟技术。 相反, 我们的方法使用标准的分解时间的散射近似值, 比如 Euler- Maruyama 计划。 我们的方法基于粒子边缘大都会- 发热、 粒子过滤器、 随机多级蒙特卡洛 和 近似 Markov 链 Monte Carlo 的重要抽样类型修正。 由此产生的估测器导致的推论没有时间分解偏差, 而随着Markov 链的迭代的增加, 我们给出了趋同结果, 并建议了算法投入的分配。 我们的方法承认了直接的平行, 并且可以进行高效的计算。 用户友好的方法在三个例子中进行了说明, 其中基础的传播是 Ornstein- Uhlenbeck 进程、 几何对布朗运动和 2 d 不可逆的朗埃文方程式。