We investigate the optimization of two probabilistic generative models with binary latent variables using a novel variational EM approach. The approach distinguishes itself from previous variational approaches by using latent states as variational parameters. Here we use efficient and general purpose sampling procedures to vary the latent states, and investigate the "black box" applicability of the resulting optimization procedure. For general purpose applicability, samples are drawn from approximate marginal distributions of the considered generative model as well as from the model's prior distribution. As such, variational sampling is defined in a generic form, and is directly executable for a given model. As a proof of concept, we then apply the novel procedure (A) to Binary Sparse Coding (a model with continuous observables), and (B) to basic Sigmoid Belief Networks (which are models with binary observables). Numerical experiments verify that the investigated approach efficiently as well as effectively increases a variational free energy objective without requiring any additional analytical steps.
翻译:我们使用新的变异EM方法调查两种概率型基因变异模型与二元潜伏变量的优化。 这种方法通过使用潜伏状态作为变异参数,将自己与以往的变异方法区分开来。 在这里,我们使用高效和通用的取样程序来改变潜伏状态,并调查由此产生的优化程序的“黑盒”适用性。 为了一般适用性,样本取自所考虑的基因变异模型的近似边际分布以及模型先前的分布。 因此, 变异抽样以通用形式界定, 并且可以直接用于特定模型。 作为概念的证明, 我们然后对二元微粒编码( 一种连续可观察的模型) 应用新程序( A ), 和 ( B) 基本Sigmobulize 网络( 这是一种二元可观察的模型 ) 。 数字实验证实, 所调查的方法既有效又有效地增加了一个不要求任何额外分析步骤的变异自由能源目标。