FlowFormer introduces a transformer architecture into optical flow estimation and achieves state-of-the-art performance. The core component of FlowFormer is the transformer-based cost-volume encoder. Inspired by the recent success of masked autoencoding (MAE) pretraining in unleashing transformers' capacity of encoding visual representation, we propose Masked Cost Volume Autoencoding (MCVA) to enhance FlowFormer by pretraining the cost-volume encoder with a novel MAE scheme. Firstly, we introduce a block-sharing masking strategy to prevent masked information leakage, as the cost maps of neighboring source pixels are highly correlated. Secondly, we propose a novel pre-text reconstruction task, which encourages the cost-volume encoder to aggregate long-range information and ensures pretraining-finetuning consistency. We also show how to modify the FlowFormer architecture to accommodate masks during pretraining. Pretrained with MCVA, FlowFormer++ ranks 1st among published methods on both Sintel and KITTI-2015 benchmarks. Specifically, FlowFormer++ achieves 1.07 and 1.94 average end-point error (AEPE) on the clean and final pass of Sintel benchmark, leading to 7.76\% and 7.18\% error reductions from FlowFormer. FlowFormer++ obtains 4.52 F1-all on the KITTI-2015 test set, improving FlowFormer by 0.16.


翻译:Flowmer公司的核心组成部分是以变压器为基础的成本量编码器。第二,我们提出了一项新的前文本重建任务,鼓励成本量编码器到综合长程信息,并确保培训前调整的一致性。我们还提议如何修改Flowformer公司结构以适应预培训期间的遮罩。在使用新的MAE计划对成本量编码器进行预先培训之前,Flower Forencod(MCVA)将Flower Former ++ 列第1级,在Sintel和KITTI 2015基准上公布的方法之一。具体地说,FlookFormer+BAR 达到7.07和1.94Flook+Recker的1.07和1.94 Flook-Reckral-Recker, Flock-Reckeral-Reckeral-Reckeral-Reck.AAEA 76 和FFF-BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_第7.18I_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_AAAAAAAAAAAA_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_18_18_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_18_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_BAR_18I_18I_18I_18I_18I)</s>

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员