Performing efficient inference on Bayesian Networks (BNs), with large numbers of densely connected variables is challenging. With exact inference methods, such as the Junction Tree algorithm, clustering complexity can grow exponentially with the number of nodes and so computation becomes intractable. This paper presents a general purpose approximate inference algorithm called Triplet Region Construction (TRC) that reduces the clustering complexity for factorized models from worst case exponential to polynomial. We employ graph factorization to reduce connection complexity and produce clusters of limited size. Unlike MCMC algorithms TRC is guaranteed to converge and we present experiments that show that TRC achieves accurate results when compared with exact solutions.
翻译:在Bayesian网络(BNs)上进行高效的推断是困难的,因为有大量密闭的变量。在精确的推断方法(如“连接树算法 ” ) 下,组合的复杂性会随着节点数量的增加而成倍增长,因此计算变得难以操作。本文提出了一个通用的近似推论算法,称为“Triplet区域建设 ” ( TRC ), 以降低从最坏的个案指数到多元模型的系数模型的组合复杂性。 我们使用图形化推理法来降低连接复杂性,并产生规模有限的组合。 与 MCMC 算法不同的是, TRC 保证会聚合, 我们提出实验, 表明与精确的解决方案相比, TRC 能够取得准确的结果 。