We design an algorithm to learn bidding strategies in repeated auctions. We consider seller and all bidders simultaneously for strategy learning and explore the convergence of this system. We apply and improve the opponent modeling class algorithm to allow bidders to learn optimal bidding strategies in this multiagent reinforcement learning environment. The algorithm uses almost no private information about the opponent and has no restrictions on the strategy space, so it can be extended to multiple scenarios. Our algorithm improves the utility compared to both static bidding strategies and dynamic learning strategies. We hope the application of opponent modeling in auctions will promote the research of bidding strategies in online auctions and the design of non-incentive compatible auction mechanisms.
翻译:我们设计了一种算法,在反复拍卖中学习投标战略。我们同时考虑出卖人和所有投标人,以便进行战略学习和探索这个系统的趋同。我们应用和改进对手模拟类算法,让投标人在这个多试剂强化学习环境中学习最佳投标战略。算法几乎不使用对手的私人信息,也不限制战略空间,因此可以扩大到多种情况。我们的算法与静态投标战略和动态学习战略相比,提高了效用。我们希望在拍卖中应用对手模拟将促进在线拍卖中的投标战略研究,以及设计非奖励性兼容拍卖机制。