Introduced by the celebrated works of Debreu and Rosen in the 1950s and 60s, concave $n$-person games have found many important applications in Economics and Game Theory. We characterize the computational complexity of finding an equilibrium in such games. We show that a general formulation of this problem belongs to PPAD, and that finding an equilibrium is PPAD-hard even for a rather restricted games of this kind: strongly-convex utilities that can be expressed as multivariate polynomials of a constant degree with axis aligned box constraints. Along the way we provide a general computational formulation of Kakutani's Fixed Point Theorem, previously formulated in a special case that is too restrictive to be useful in reductions, and prove it PPAD-complete.
翻译:20世纪50年代和60年代Debreu 和 Rosen 的著名作品所引入的, 折合美元游戏在经济学和游戏理论中发现许多重要的应用。 我们描述在这种游戏中找到平衡的计算复杂性。 我们显示,这一问题的一般表述属于PPAD, 找到平衡是很难的, 甚至对于这种相当有限的游戏来说也是如此: 强烈的折合公用设施, 可以用轴对齐的框框限制来表示, 以恒定的多变多音多音。 我们提供Kakutani固定点理论的一般计算公式的方式, 之前是在一个限制性过强、 无法用于削减的特例中制定的, 并证明它是PPADAD的完整。