The graph parameter of pathwidth can be seen as a measure of the topological resemblance of a graph to a path. A popular definition of pathwidth is given in terms of node search where we are given a system of tunnels that is contaminated by some infectious substance and we are looking for a search strategy that, at each step, either places a searcher on a vertex or removes a searcher from a vertex and where an edge is cleaned when both endpoints are simultaneously occupied by searchers. It was proved that the minimum number of searchers required for a successful cleaning strategy is equal to the pathwidth of the graph plus one. Two desired characteristics for a cleaning strategy is to be monotone (no recontamination occurs) and connected (clean territories always remain connected). Under these two demands, the number of searchers is equivalent to a variant of pathwidth called {\em connected pathwidth}. We prove that connected pathwidth is fixed parameter tractable, in particular we design a $2^{O(k^2)}\cdot n$ time algorithm that checks whether the connected pathwidth of $G$ is at most $k.$ This resolves an open question by [Dereniowski, Osula, and Rz{\k{a}}{\.{z}}ewski, Finding small-width connected path-decompositions in polynomial time. Theor. Comput. Sci., 794:85-100, 2019]. For our algorithm, we enrich the typical sequence technique that is able to deal with the connectivity demand. Typical sequences have been introduced in [Bodlaender and Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996] for the design of linear parameterized algorithms for treewidth and pathwidth. The proposed extension is based on an encoding of the connectivity property that is quite versatile and may be adapted so to deliver linear parameterized algorithms for the connected variants of other width parameters as well.
翻译:路径线条的图形参数可以被视为一个路径路径的图层相似性。 路径线条以节点搜索方式给出了路径线的流行定义。 当我们得到一个被某些传染物质污染的隧道系统时, 我们正在寻找一个搜索策略, 在每一个步骤中, 要么将搜索器放在顶端上, 要么将搜索器从一个顶端移走, 当两个端点同时被搜索者占据时, 边緣会被清除。 事实证明, 成功清理战略所需的最起码的精度搜索器数量等于图形加一个路径线条路径。 两种用于清理战略的直径值。 常规路径线条的两种理想特性是: 单线条( 不进行重新定位) 。 在这两个步骤下, 搜索器的数量相当于路径线条的变异异种, 将路径线条从 ~ 。 我们的路径线条线条可同时被搜索 。 。 特别是我们设计了“ 速度” (k)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\