Object detection is widely studied in computer vision filed. In recent years, certain representative deep learning based detection methods along with solid benchmarks are proposed, which boosts the development of related researchs. However, there is no object detection benchmark targeted at military field so far. To facilitate future military object detection research, we propose a novel, publicly available object detection benchmark in military filed called MOD, which contains 6,000 images and 17,465 labeled instances. Unlike previous benchmarks, objects in MOD contain unique challenges such as camouflage, blur, inter-class similarity, intra-class variance and complex military environment. Experiments show that under above chanllenges, existing detection methods suffer from undesirable performance. To address this issue, we propose LGA-RCNN which utilizes a loss-guided attention (LGA) module to highlight representative region of objects. Then, those highlighted local information are fused with global information for precise classification and localization. Extensive experiments on MOD validate the effectiveness of our method and the whole dataset can be found at https://github.com/heartyi/MOD.


翻译:近些年来,提出了某些有代表性的深层次学习型探测方法和坚实的基准,促进了相关研究的发展。然而,迄今为止,还没有针对军事领域的物体探测基准。为了便利未来的军事物体探测研究,我们提议在军事档案中建立一个新的、公开的、称为MOD的物体探测基准,其中包括6,000个图像和17,465个标记实例。与以往的基准不同,MOD的物体含有独特的挑战,如迷彩、模糊、阶级间相似、阶级间差异和复杂的军事环境。实验表明,在上文Chanllenges之下,现有的探测方法存在不良的性能。为了解决这一问题,我们建议LGA-RCNN(LGA)使用一个丢失引导注意模块来突出具有代表性的物体区域。然后,这些突出的当地信息与全球信息相结合,以便精确分类和本地化。关于MOD的大规模实验证实了我们的方法的有效性,整个数据集可在https://github.com/hearttyi/MOD查阅。

1
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
13+阅读 · 2021年3月3日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
7+阅读 · 2018年3月19日
VIP会员
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
13+阅读 · 2021年3月3日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
5+阅读 · 2019年4月8日
Arxiv
7+阅读 · 2018年3月19日
Top
微信扫码咨询专知VIP会员