The Symmetric Positive Definite (SPD) matrix has received wide attention as a tool for visual data representation in computer vision. Although there are many different attempts to develop effective deep architectures for data processing on the Riemannian manifold of SPD matrices, a very few solutions explicitly mine the local geometrical information in deep SPD feature representations. While CNNs have demonstrated the potential of hierarchical local pattern extraction even for SPD represented data, we argue that it is of utmost importance to ensure the preservation of local geometric information in the SPD networks. Accordingly, in this work we propose an SPD network designed with this objective in mind. In particular, we propose an architecture, referred to as MSNet, which fuses geometrical multi-scale information. We first analyse the convolution operator commonly used for mapping the local information in Euclidean deep networks from the perspective of a higher level of abstraction afforded by the Category Theory. Based on this analysis, we postulate a submanifold selection principle to guide the design of our MSNet. In particular, we use it to design a submanifold fusion block to take advantage of the rich local geometry encoded in the network layers. The experiments involving multiple visual tasks show that our algorithm outperforms most Riemannian SOTA competitors.
翻译:相对正偏差矩阵作为计算机愿景中视觉数据代表的一种工具得到了广泛的关注。虽然在为SPD矩阵的里曼尼亚方块上开发有效的深层数据处理结构方面,有许多不同的尝试,在SPD矩阵的里曼尼亚方块上开发有效的深层结构,但有一些解决办法明确地将本地的几何信息埋入深层SPD特征图示中。尽管CNN已经展示了甚至对SPD所代表的数据也进行分级本地模式提取的潜力,但我们争辩说,确保SPD网络中保存本地的几何信息至关重要。因此,我们在此工作中提议了一个以这一目的为设计的SPD网络。特别是,我们建议建立一个称为MSNet的系统,将几何计量多尺度信息结合起来。我们首先从Clolidean深度网络中用于绘制本地本地本地信息的常规操作者,从更高层次的抽象数据的角度来分析。我们根据这一分析,将一个亚方位选择原则用于指导我们的MSDNet的设计。我们用它来设计一个子拼图集组合块,以利用MSNet,特别是,即MSNet,即我们设计一个称为MSNet的MSNet,即MSNet,把MNet连接连接连接连接连接连接连接连接起来,把几级信息连接连接连接起来,将几级信息连接起来,将多级信息连接起来,将多级信息连接起来。我们首先利用SOLdeabormatrodormabormabormaxx