We analyze Newton's method with lazy Hessian updates for solving general possibly non-convex optimization problems. We propose to reuse a previously seen Hessian for several iterations while computing new gradients at each step of the method. This significantly reduces the overall arithmetical complexity of second-order optimization schemes. By using the cubic regularization technique, we establish fast global convergence of our method to a second-order stationary point, while the Hessian does not need to be updated each iteration. For convex problems, we justify global and local superlinear rates for lazy Newton steps with quadratic regularization, which is easier to compute. The optimal frequency for updating the Hessian is once every $d$ iterations, where $d$ is the dimension of the problem. This provably improves the total arithmetical complexity of second-order algorithms by a factor $\sqrt{d}$.
翻译:我们用懒惰的赫森式更新方法分析牛顿式方法, 以解决一般的、 可能非电离层优化问题。 我们建议重新使用以前看到的赫森式方法进行多次迭代, 同时在方法的每一步计算新的梯度。 这大大降低了二阶优化计划的总体计算复杂性。 通过使用立方正规化技术, 我们的方法可以快速实现全球趋同到第二阶固定点, 而赫森式方法不需要对每一次迭代进行更新 。 对于 convex 问题, 我们建议重新使用以前看到的赫森式方法进行多次迭代。 我们建议重新使用以前看到的赫森式方法, 并在方法的每一步中计算新的梯度。 更新赫森式的最佳频率是一次美元, 其中美元是问题的维度。 这可以明显地提高二阶算法的总算复杂度, 以 $sqrt{d} 来提高第二阶段算法的计算复杂性。