We propose a novel point annotated setting for the weakly semi-supervised object detection task, in which the dataset comprises small fully annotated images and large weakly annotated images by points. It achieves a balance between tremendous annotation burden and detection performance. Based on this setting, we analyze existing detectors and find that these detectors have difficulty in fully exploiting the power of the annotated points. To solve this, we introduce a new detector, Point DETR, which extends DETR by adding a point encoder. Extensive experiments conducted on MS-COCO dataset in various data settings show the effectiveness of our method. In particular, when using 20% fully labeled data from COCO, our detector achieves a promising performance, 33.3 AP, which outperforms a strong baseline (FCOS) by 2.0 AP, and we demonstrate the point annotations bring over 10 points in various AR metrics.
翻译:我们为微弱的半监督天体探测任务提出了一个新点附加说明的设置,其中数据集包含少量完全注解的图像和大量微弱的按点注解的图像。 它在巨大的注解负担和探测性能之间实现了平衡。 根据这一设置,我们分析现有的探测器,发现这些探测器难以充分利用注解点的力量。为了解决这个问题,我们引入了一个新的探测器,即点DETR,它通过添加点编码器来扩展DETR。在不同数据环境中对 MS-CO 数据集进行的广泛实验显示了我们的方法的有效性。特别是,在使用COCOCO 上标注的20%数据时,我们的探测器取得了良好的性能,即33.3 AP,它比2.0 AP 的强基线(FCOS) 高出了0. 0,我们展示了点说明,在各种AR指标中增加了10个以上的点。