In this paper we provide an $\tilde{O}(nd+d^{3})$ time randomized algorithm for solving linear programs with $d$ variables and $n$ constraints with high probability. To obtain this result we provide a robust, primal-dual $\tilde{O}(\sqrt{d})$-iteration interior point method inspired by the methods of Lee and Sidford (2014, 2019) and show how to efficiently implement this method using new data-structures based on heavy-hitters, the Johnson-Lindenstrauss lemma, and inverse maintenance. Interestingly, we obtain this running time without using fast matrix multiplication and consequently, barring a major advance in linear system solving, our running time is near optimal for solving dense linear programs among algorithms that do not use fast matrix multiplication.


翻译:在本文中, 我们提供了一种 $\ tilde{ O} (nd+d ⁇ 3}) 的时间随机算法, 用于用 $d$ 变量和 $n$ 限制以高概率解决线性程序。 为了获得这一结果, 我们提供了一种由 Lee 和 Sidford (2014, 2019) 方法启发的坚固的、 原始- 原始的 $ tilde{ O} (sqrt{d}) $- itel 内点法, 并展示了如何使用基于重光源、 Johnson- Lindenstruss Lemma 和反向维护的新数据结构来高效实施这种方法。 有趣的是, 我们获得这个运行时间时没有使用快速矩阵乘法, 因而, 如果不能在线性系统解答中取得重大进步, 我们运行时间几乎是最佳的解决不使用快速矩阵倍增法的计算法中密度线性线性程序的方法 。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
雪球
6+阅读 · 2018年8月19日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年6月22日
Arxiv
3+阅读 · 2018年4月9日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
172+阅读 · 2020年5月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
雪球
6+阅读 · 2018年8月19日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员