Optimal transport (OT) has recently found widespread interest in machine learning. It allows to define novel distances between probability measures, which have shown promise in several applications. In this work, we discuss how to computationally approach general non-linear OT problems within the framework of Riemannian manifold optimization. The basis of this is the manifold of doubly stochastic matrices (and their generalization). Even though the manifold geometry is not new, surprisingly, its usefulness for solving general non-linear OT problems has not been popular. To this end, we specifically discuss optimization-related ingredients that allow modeling the OT problem on smooth Riemannian manifolds by exploiting the geometry of the search space. We also discuss extensions where we reuse the developed optimization ingredients. We make available the Manifold optimization-based Optimal Transport, or MOT, repository with codes useful in solving OT problems in Python and Matlab. The codes are available at \url{https://github.com/SatyadevNtv/MOT}.
翻译:最佳运输(OT)最近发现了对机器学习的广泛兴趣。 它允许界定概率计量方法之间的新距离, 这在若干应用中显示出希望。 在这项工作中, 我们讨论如何在Riemannian 的多元优化框架内, 以计算方式处理一般的非线性OT问题。 其基础是双层随机矩阵( 及其概括化) 。 尽管多元几何方法并不新鲜, 令人惊讶的是, 它对于解决一般的非线性OT问题的用处并不普遍。 为此, 我们专门讨论最优化相关成分, 通过利用搜索空间的几何方法, 在光滑的Riemannian 方形上模拟OT问题。 我们还讨论了我们再利用开发的优化成分的扩展。 我们提供了基于马尼曲的优化优化最佳运输, 或MOT, 存放了有助于解决Python和Matlab的OT问题的代码。 代码可在以下https://github. com/SatyadevNtv/MOT}查阅。