Our goal is to finally settle a persistent problem in Diophantine Approximation, that of finding best inhomogeneous linear approximates. Classical results from the theory of continued fractions solve the special homogeneous case in the form of a complete sequence of normal approximates. Real expansions that allow the notion of normality to percolate into the inhomogeneous setting will provide us with the general solution.
翻译:我们的目标是最终解决在二恶英接近性方面一个长期存在的问题,即找到最佳异同线性近似值的问题,持续分数理论的经典结果以正常近似完整序列的形式解决了特殊同质情况。 允许常态概念渗透到异异异环境的真正扩展将给我们提供总体解决方案。