Personal photos of individuals when shared online, apart from exhibiting a myriad of memorable details, also reveals a wide range of private information and potentially entails privacy risks (e.g., online harassment, tracking). To mitigate such risks, it is crucial to study techniques that allow individuals to limit the private information leaked in visual data. We tackle this problem in a novel image obfuscation framework: to maximize entropy on inferences over targeted privacy attributes, while retaining image fidelity. We approach the problem based on an encoder-decoder style architecture, with two key novelties: (a) introducing a discriminator to perform bi-directional translation simultaneously from multiple unpaired domains; (b) predicting an image interpolation which maximizes uncertainty over a target set of attributes. We find our approach generates obfuscated images faithful to the original input images, and additionally increase uncertainty by 6.2$\times$ (or up to 0.85 bits) over the non-obfuscated counterparts.


翻译:个人个人照片在网上分享时,除了展示大量难忘的细节外,还揭示了广泛的私人信息,并有可能带来隐私风险(例如在线骚扰、跟踪)。为了减轻这种风险,至关重要的是研究各种技术,使个人能够限制视觉数据中泄漏的私人信息。我们用一个新颖的图像模糊框架来解决这个问题:在目标隐私属性的推论上最大限度地放大对目标隐私属性的误判,同时保持图像的忠诚性。我们根据编码解码风格结构来处理这个问题,我们有两个关键的新颖之处:(a) 引入一个歧视器,同时从多个未读领域进行双向翻译;(b) 预测图像互译,使一组目标属性的不确定性最大化。我们发现,我们的方法产生与原始输入图像相符的模糊图像,并给非模糊对应方带来6.2美元(或0.85位)的不确定性增加6.2美元(或0.85位)。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
自监督学习最新研究进展
专知会员服务
76+阅读 · 2021年3月24日
如何撰写好你的博士论文?CMU-Priya博士这30页ppt为你指点
专知会员服务
56+阅读 · 2020年10月30日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
3+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年5月9日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
已删除
将门创投
3+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员